HW 2 (today): 2.2 \& slope fields
HW 3 (Wed): 2.1 Integrating Factors 2.3 applications

2.1: Integrating Factors

 (Linear $1^{\text {st }}$ Order Diff. Eqns)Recall: We have been solving $1^{\text {st }}$ order equations such as:

$$
\frac{d y}{d t}=G(t, y)
$$

We call the equation linear if $G(t, y)$ is a linear function of y, that is:

$$
G(t, y)=m(t) y+b(t)
$$

Otherwise, we say it is non-linear.

Many important applications we have seen are linear (populations, bank accounts, air resistance, temperature, etc...), so this is an important special case.

Given a $1^{\text {st }}$ order linear ODE, we like to re-arrange it into the form:

$$
\frac{d y}{d t}+p(t) y=g(t)
$$

Examples:

1. $\frac{d y}{d t}+t y=t^{3}$

Give $p(t)$ and $g(t)$.
2. $x \frac{d y}{d x}=\sin (x)-2 y$

Give $p(x)$ and $g(x)$.

Big Observation 1

The form

$$
\frac{d y}{d t}+p(t) y
$$

looks sort of like the product rule.
Recall: Here is the product rule

$$
\frac{d}{d t}(f(t) y)=f(t) \frac{d y}{d t}+f^{\prime}(t) y
$$

Example:
$\frac{d y}{d t}+2 y=\frac{t}{e^{2 t}}$
so $p(t)=2$ and $g(t)=\frac{t}{e^{2 t}}$
What happens if you multiply both sides by $e^{2 t}$?

You get

$$
e^{2 t} \frac{d y}{d t}+2 e^{2 t} y=t
$$

which is

$$
\frac{d}{d t}\left(e^{2 t} y\right)=t
$$

Integrating both sides gives

$$
e^{2 t} y=\frac{1}{2} t^{2}+C
$$

so

$$
y=\frac{\frac{1}{2} t^{2}+C}{e^{2 t}}
$$

In this example, we call $\mu(t)=e^{2 t}$, the integrating factor, which is a function we multiply by so we can reverse the product rule.

Okay, sort of cool, but we were lucky this time, how can we make this work in a more general way?
We need another big observation.

Big Observation 2

If $F(t)$ is any antiderivative of $p(t)$

$$
F(t)=\int p(t) d t
$$

then

$$
\begin{aligned}
\frac{d}{d t}\left(e^{F(t)} y\right) & =e^{F(t)} \frac{d y}{d t}+p(t) e^{F(t)} y \\
& =e^{F(t)}\left(\frac{d y}{d t}+p(t) y\right) .
\end{aligned}
$$

So if we multiply by

$$
\mu(t)=e^{\int p(t) d t}
$$

then we create a situation where we can reverse the product rule.

Integrating Factor Method Given a linear, $1^{\text {st }}$ order ODE

$$
\frac{d y}{d t}=f(t, y)
$$

Step 0: Put in form

$$
\frac{d y}{d t}+p(t) y=g(t)
$$

Step 1: Find

$$
F(t)=\int p(t) d t
$$

\& write/simplify $\mu(t)=e^{\int p(t) d t}$
Step 2: Multiply BOTH sides by $\mu(t)$. \& re-write LHS as product rule.

Step 3: Integrate both sides, and simplify.

Example: $\frac{d y}{d t}=\frac{\cos (t)}{t^{2}}-\frac{2 y}{t}$
Step 0:

$$
\begin{gathered}
\frac{d y}{d t}+\frac{2}{t} y=\frac{\cos (t)}{t^{2}} \\
\text { Step 1: } F(t)=\int \frac{2}{t} d t=2 \ln (t)+C \\
\mu(t)=e^{2 \ln (t)}=e^{\ln \left(t^{2}\right)}=t^{2} \\
\text { Step 2: } t^{2} \frac{d y}{d t}+2 t y=\cos (t) \\
\frac{d}{d t}\left(t^{2} y\right)=\cos (t)
\end{gathered}
$$

$$
\begin{aligned}
\text { Step 3: } t^{2} y & =\sin (t)+C \\
y & =\frac{\sin (t)+C}{t^{2}}
\end{aligned}
$$

Example:

$$
3 \frac{d y}{d t}-6 t y-3 e^{t^{2}}=0
$$

Example:

$$
\frac{d y}{d t}=t-3 y
$$

Two Notes:

- Only for linear $1^{\text {st }}$ order ODEs!

Aside:

Again, sometimes a substitution can make it linear.
Example:
$e^{y} \frac{d y}{d t}-\frac{1}{x} e^{y}=3 x$ is not linear Using

$$
v=e^{y} \rightarrow \frac{d v}{d t}=e^{y} \frac{d y}{d t}
$$

Changes it to

$$
\frac{d v}{d t}-\frac{1}{x} v=3 x \quad \text { which is linear }
$$

- If we can't do the integrals we can still write our answer in terms of integrals.

In which case the convention is to write

$$
\int f(t) d t=\int_{0}^{t} f(u) d u+C
$$

(so we can solve for C if needed).
See next page for an example.

Example:

$$
\frac{1}{6} \frac{d y}{d t}+t^{2} y=\frac{1}{6}
$$

